Roles of default-mode network and supplementary motor area in human vigilance performance: evidence from real-time fMRI.
نویسندگان
چکیده
We used real-time functional magnetic resonance imaging (fMRI) to determine which regions of the human brain have a role in vigilance as measured by reaction time (RT) to variably timed stimuli. We first identified brain regions where activation before stimulus presentation predicted RT. Slower RT was preceded by greater activation in the default-mode network, including lateral parietal, precuneus, and medial prefrontal cortices; faster RT was preceded by greater activation in the supplementary motor area (SMA). We examined the roles of these brain regions in vigilance by triggering trials based on brain states defined by blood oxygenation level-dependent activation measured using real-time fMRI. When activation of relevant neural systems indicated either a good brain state (increased activation of SMA) or a bad brain state (increased activation of lateral parietal cortex and precuneus) for performance, a target was presented and RT was measured. RTs on trials triggered by a good brain state were significantly faster than RTs on trials triggered by a bad brain state. Thus human performance was controlled by monitoring brain states that indicated high or low vigilance. These findings identify neural systems that have a role in vigilance and provide direct evidence that the default-mode network has a role in human performance. The ability to control and enhance human behavior based on brain state may have broad implications.
منابع مشابه
Default Network Activity Is Associated with Better Performance in a Vigilance Task
When attention has to be maintained over prolonged periods performance slowly fluctuates and errors can occur. It has been shown that lapses of attention are correlated with BOLD signals in frontal and parietal cortex. This raises the question how attentional fluctuations are linked to the fronto-parietal default network. Because the attentional state fluctuates slowly we expect that potential ...
متن کاملPolarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks☆
Transcranial direct current stimulation (tDCS) has been used to modify motor performance in healthy and patient populations. However, our understanding of the large-scale neuroplastic changes that support such behavioural effects is limited. Here, we used both seed-based and independent component analyses (ICA) approaches to probe tDCS-induced modifications in resting state activity with the ai...
متن کاملThe neural basis of the psychomotor vigilance task.
STUDY OBJECTIVE To identify brain regions underlying the fastest and slowest reaction times on the Psychomotor Vigilance task (PVT) under well-rested conditions, as well as brain regions related to particularly poor performance after sleep deprivation. DESIGN Subjects took the PVT twice while undergoing functional magnetic resonance imaging: once 12 hours after waking from a normal night of s...
متن کاملDetecting neural activity and connectivity by perfusion-based fMRI
This study proposes an approach to estimate the functional localization and connectivity from CBF and BOLD signals simultaneously measured by ASL (arterial spin labeling) MRI, especially using exploratory Structural Equation Modeling analysis. In a visual task experiment, the primary visual cortices were located by analyzing the perfusion data. In the resting state experiment, two structural eq...
متن کاملResting-State fMRI Associated with Stop-Signal Task Performance in Healthy Middle-Aged and Elderly People
Several brain regions and connectivity networks may be altered as aging occurs. We are interested in investigating if resting-state functional magnetic resonance imaging (RS-fMRI) can also be valid as an indicator of individual differences in association with inhibition performance among aged (including middle-aged) people. Seventy-two healthy adults (40-77 years of age) were recruited. Their R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2013